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The values of the stresses and of the heat fluxes in shear flow of an 

ideal monatomic Maxwellian gas in the absence of external forces have 

been computed in the papers [ 1,2 1 using the moment equations. This made 

it possible to estimate, through comparison, the area of applicability 

of the equations of Navier-Stokes, Burnett, etc. and to clarify the 

effect of rarefaction on the flow parameters. This paper considers a 

wider class of flows of such a gas under the assumption that all the 

moments of the distribution function are functions of time t, and the 

macroscopic velocity depends linearly on the coordinates. 

In the absence of external forces the equations of continuity. 

momentum, energy, the stresses p.. and the third order moments Sijk of 

an ideal monatomic gas with Kaxwe lian molecules are, respectively, [3 1 'i 

(1) 

+ + (9Sijk - Sisjk - Sjsik - sk3ij) = 0 (3) 

Here we made use of the usual convention of summing over repeated 

indices, and have put 
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RP CC=---, r,=+, R=-A, beat flow 
CL0 PT 

-+-s,=f&$&' tij =Pij + @ij* pn+ P22 + Pss = 0 

Q ijkr is the fourth order moment, 8,i the unit tensor, 

fAij]=~(Aij-f-Aji)--dA11,6ij 

Let 
P = P G?. rij = rij (t), Sijk = Sijk ft) 

Qijkr= Qijftr(tf, us = qtwj + 90) 

In what fallows we shall assume, for simplicity, that 4 ( t l- 0. Then 
the equation of continuity implies 

~=~oex~(+dt) (1 = Y,l + ‘u;, + Ysd 

and the momentum equation implies 

Equations (I) - (3) take the form 

yF f .;- pr + *pi jYfEijz 6 (~=~~ 

d&j 
-;ii + Pijz + 2 IP$ryjrI + 2P Iy*j] + @iJ cxF (-1 idt)ppO 

d*+S..y’ tg kr 
+s. .y. +s tria 3’ Y. +s..~f 

rjk lr %3x: 

1 
+-~er,exp(-j Tdt)itiSijk-SSibjk-SjSi,-Sh.~ij)=O 

6 

(5) 

(6) 

m 
Thus the problem of determ~n~ng the second order moments r ij and the 

third order moments Sijd is reduced to that of solving two independent 
systems of 6 and 10 homogeneous linear differential equations of the 
first order with variable coefficients, the systems being connected by 
equations (4). 

In Burnett’s approximation 14 1 this problem has the following solu- 
tion: 

s, = 0 

where the Navfer-Stokes approximation is given by the first term 
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i 
p=J?(O)exp - * 

[ SC 51+.P$$ 
1 I 

.$ 

0 

Here the $ij are the solutions of the system of equations (4). 

In the case under consideration the system of Grad’s 13-moment equatic 
[3 1 yields exact values for the stresses and approximate values for the 
heat fluxes, which satisfy the system of equation 

dSi 
x+-g- sruri, + ; 

T 
S,yri + -- -. Sii $ . ..‘-” aSt ___ 0 

5 3 (8) 

which is valid for small gradients of the flow parameters. 

We now consider some very simple flows of the class flows under in- 
vestigation. 

where aij is the Kronecker delta. Then 

V=uifvj+wk= --.%_ 
t+e 

i.e.. we have a flow with spherical propagation. The energy 
takes the form 

equation 

$++!&=O or p = E (t + c)-3 

It is then easy to obtain 

Pij --- Pij (0) t?Xp c - 51n (l -j- c) + -; CL0 (t + 6)“” 1 
Si = Si (0) exp I- 61n (t j- c) + -i- a, (t + ~)-a] 

The system of Grad’s 13-moment equations gives exact values of all 
gas-dynamical parameters of the flow. In the Navier-Stokes and Burnett 
approximations pij = 0, Si = 0. 

(b) Let @Ii = $22 = $33 = 0, i.e., let the density be constant. The 
system (4) implies that only three of the coefficients $ij are not zero. 
These are connected by the relation 

where $,,I, @is, c,,,, are constants. For instance 

u = (=- YPlsY.P32t -I- cl*) Y -t- uTl3.G 2: 2 0, w -= yr,,?/ 

i.e., in the planes y = const. the flow results from superposition of 
the uniform flow a, = t&2y on the shear flow 

u = (-- Yl3uP,d -f- Cj2) y + YlSZ 

Cc) Let $;,. = $(6). Then 
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The velocity is constant on, and perpendicular to. the plane x + y + 
z = const., i.e. we have an instance of a uniform flow which decreases 
with time. 

(d) Let all the coefficients $ij be constant and different from zero; 

the density is constant (I = 0). Then four of the $ij are arbitrary: 

u=- Yza+- ( Y32Y23 \ 
Y22 I 5p 

YmYz2 u= - 
Y22 

c 

w = Y2alSr 4=x+ ;gy+$gz 

The velocity of the flow is constant on the stream surface [= const., 
i.e. the flow is a shearing flow Il.2 I. In the Navier-Stokes apnroxima- 
tion this flow represents a Couette flow in which the temperature of the 
walls varies with time. 

(e) It is easy to see that in the plane case (equation 9, below) we 
also have a shearing flow if $ii = - $.2 (p= constant). Then &2, &i, 

+ 11 =- + \/- +i.#2cil are constant. An interesting feature of this flow is 
the fact that for a large range of variation 

IPI =O(MI/L) 

(where Y is the Mach number and l/L is the ratio of the mean free path 
of the molecules to the characteristic dimension of the iron). The real 
root X, = Qrl of the characteristic equation x3 + ti2 + n2X - a3p2 = 0 
of the system of equations (5) and (8) is better approximated by a series 
in large @, for which r1 = B ‘13- 2/3 + 1/9p-2’3 than by a series in small 

B, for which r1 = p2 - 3@. 

Fig. 1. 

A similar situation obtains for the real root h, = arO of the 
characteristic equation 
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of the system of equations for the determination of S3. 

In Fig. 1 the exact values of the roots rl, r0 (the solid lines) are 
compared with the approximate values 

rl = ($“I - $ + $ p-‘I”, ro= (+ p2)“‘_$-+_& ($pZ)-‘I’ 

The system of equation (8) yields ru I - 2/3. 

(f) In the plane case the system (4) has a simple so 
case 

lution. In this 

d$ + Y112 fY21Y1a = 0, d++ YllYzl+ YnYza= 0 

% + YllYlZ + YlZ~22 = 0, % + Ylz,Y‘21 + Y222 = 0 (9) 

whence 

YZl = ClYlZ = ClY, Yll - Yzz = CzY, 

where $ satisfies the equation 

whose solution is 

Y-1 = I.?3 (t - C&)2 - ca2 - 4Cl 

BIBLIOGRAPHY 

1. Galkin, V. S. Ob odnom reshenii kineticheskovo uravneniia Bol’tsmana 
(On a certain solution of Boltzmann’s equation). PIN Vol. 20. No.3, 
1956. 

2. Truesdell, C., On the pressures and flux of energy in 8 gas according 
toEaxwell’s kinetic theory. J. Rational Ycch. Anal. Vol. 5. 
No. 1. 1956. 

3. Grad, H., On the Kinetic Theory of Rarefied Gases. Coraun. Pure 
Appl. Yath. Vol. 2, p. 331, 1949. 

4. Lin, T.C. and Street, BE., Effect of Variable Viscority and Therral 

Conductivity on Righ-Speed Flow between Concentric Cylindere. NACA 

Rep. No. 1175, 1954. 

Tranrlated by A.S. 


